

## Our SDI and AES over IP journey

BCE at RTL City



#### **BCE** main activities

#### **MEDIA SERVICES**



#### **SYSTEM INTEGRATION**



#### **SOFTWARE SOLUTIONS**



**Broadcast** 

Datacentre

Digital Media Operations

**IT Managed Services** 

Telecom

Teleport

**Transmissions** 



Mass digitisation

**Content Management** 

Traffic

Distribution

Playout

WebTV

**IPTV** 

Non-linear

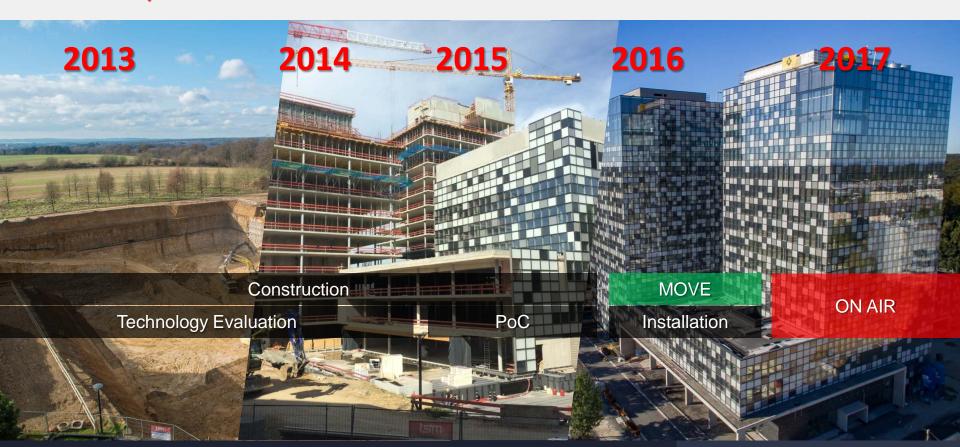
Television/Radio

MAM and Newsroom

Post production

Production

**Transmissions** 


Teleport

Telecom

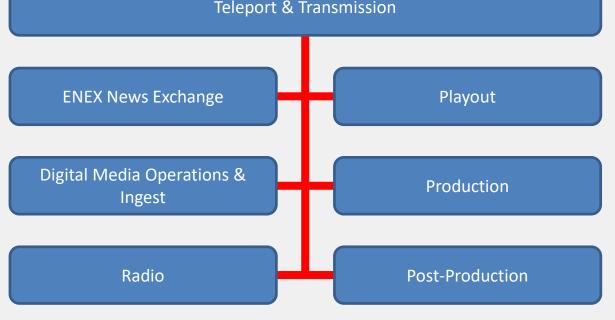
Multimedia

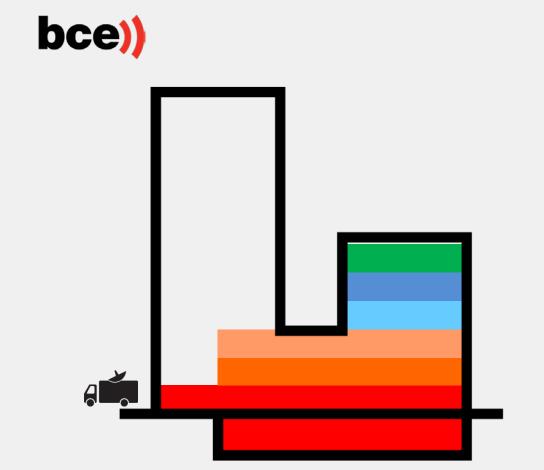
IT

## bce))






## **OUR BUILDING DESIGN**


And our constrains



# **Teleport & Transmission ENEX News Exchange** Playout

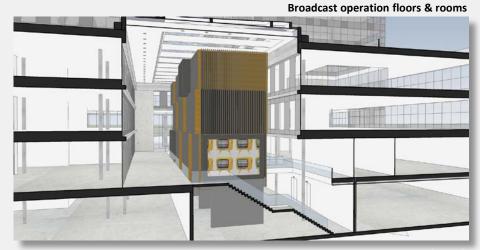
### **Overview of systems** and activities





**Building and Floor Layout** 

It's an office building


- 5 Management
- **4 IT**
- 3 Engineering
- 2 Playout
- 1 Post Production
- O Radio studios
- -1 Datacenter & TV studios



### **Building constrains**

- The floors -1, 0, 1 and 2 are suitable for Broadcast operations
- Limited cooling power for the media operation rooms
- No equipment room on floor 0, 1, 2

- Common equipment room
- Complex wiring must be avoided



CLT-UFA Multi-playou



## **DATACENTRE**

Centralized Equipment Room



## 1000 sqm at RTL City - 366 / 51U Racks





## **In Row Cooling**

366 Racks
In-Row Cooling
UPS 2 x 1,1MW
420 km Broadcast Cabling
Fiber and Copper

Tier 2 Datacenter







# **Inter-Floor Connectivity by Fiber**

Floor 2

Floor 1

Floor 0

Floor -1

bce))



## **SYSTEM REQUIREMENTS**

Based on our Building design and the decision for an IP solution



### Requirements

- SMPTE ST 2022-6/-7 (for SDI over IP and stream redundancy)
- AES67 for audio signals in the same network
- Evolution towards ST 2110 Standards/Interop
- Format agnostic (1080p, UHD, HDR, HFR) Future proof
- Source & destination audio stream & channel swapping
- Viewing anywhere Scalable distributed IP multi-viewer architecture
- Dual Central Switches architecture preferred. Scale to Spine/Leaf. Support a minimum of 7500 multicast routes.
- Reduce TCO
- Multivendor selection
- COTS equipment
- Reduce complexity
- Innovation

CLT-UFA Multi-playou



### **Achievement vs Expectations**

- SMPTE ST 2022-6/-7 (for SDI over IP and stream redundancy)
- AES67 for audio signals in the same network
- Evolution towards ST 2110 Standards/Interop
- Format agnostic (1080p, UHD, HDR, HFR) Future proof
- Source & destination audio stream & channel swapping
- Viewing anywhere Scalable distributed IP multi-viewer architecture
- Dual Central Switches architecture preferred. Scale to Spine/Leaf. Support a minimum of 7500 multicast routes.
- Reduce TCO
- Multivendor selection
- COTS equipment
- Reduce complexity
- Innovation



### **Basic Concept**

- Edge devices based on 40G technology for IP gateways, production Switcher, Multiviewers, etc.
- Edge devices based on 10G technology for cameras, video servers, audio mixer, video encoding, etc.
- Design based on SMPTE ST 2022-6/-7, AES67, RFC4175, VC-2, Metadata as for TR-03
- Start using the system with SMPTE ST 2022-6/-7 and AES67 as for TR-04
- Control & Monitoring System based on IP router controller & user friendly controller
   GUI
- Timing & Synchronization PTP & BB for legacy SDI equipment

Software upgrades unlock future standardization (e.g. ST2110 family)

CLT-UFA Multi-playou



## **Proof of Concept at BCE Labs**

Individual Proof of Concept with each suppliers in Luxembourg















Tests and Measurements made by BCE and IRT



## **Proof of Concept @IRT**

## Proof of Interoperability at IRT, München



Tests and Measurements made by BCE and IRT



## **OUR SYSTEM**



## Standards applied today @ BCE

- SMPTE ST 2022-6/-7 for SDI over IP and
- AES67 for audio over IP
- DANTE In use for all the Radio services
- VSR TR04
- Software upgrades unlock future standardization (e.g. ST2110 family)

CLT-UFA Multi-playout



## Key IP components used for our system

- 2 Core Switches
- Long Range QSFP+/SFP Transceivers, 40 and 10 GB/s (second generation)
- Video and Audio gateways
- Multiviewers
- Audio processing (channel shuffling and AES67 <-> MADI conversion)
- Cameras
- Vision & Audio Mixer
- Playout Servers
- Contribution Encoders
- PTP Master clock

CLT-UFA Multi-playout



## **Key IP components by manufacturer**

- Arista and Juniper Core Switches
- Arista Long Range QSFP+/SFP Transceivers, 40 and 10 GB/s



- IQMIX
- IQMADI
- Multiviewers
- Audio Shuffling
- Routing Controller
- Vision Mixer

### harmonic

- Servers
- Encoders



Cameras

#### STUDER

Audio Mixer

#### Tektronix<sup>®</sup>

- SPG/PTP Generator
- T&M

#### *MEINBERG*

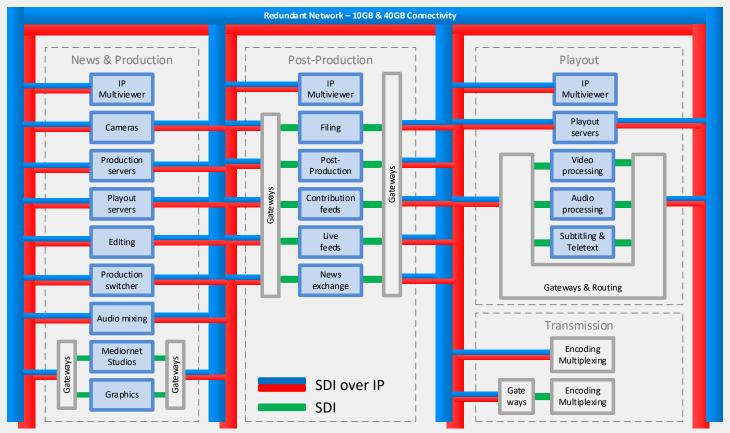
PTP Master Clock

#### DHD.audio

Radio Audio Mix & Routing



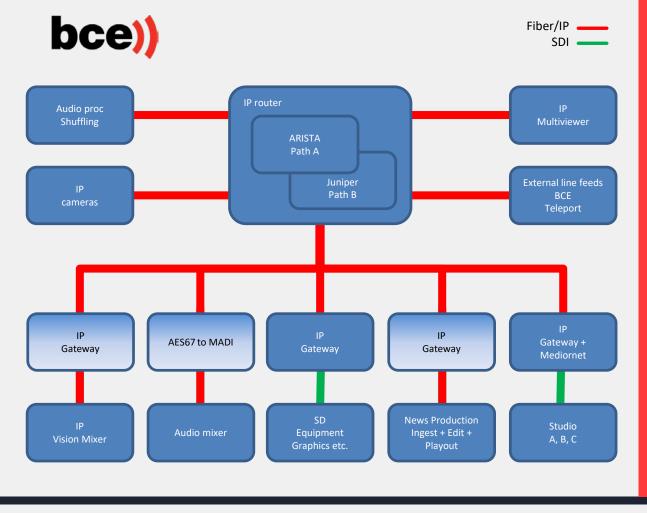
## Our configuration in figures


| Gateway<br>devices | Ports                | Configured<br>as<br>VSF TR-03 | Configured<br>Flows | Currently<br>as<br>VSF TR-04 | # of Flows |
|--------------------|----------------------|-------------------------------|---------------------|------------------------------|------------|
| 163                |                      | 2022-6                        | 9888                | 2022-6                       | 1200       |
| Boards             | 1104<br>Sources      | RFC 4175                      |                     |                              |            |
| =                  |                      | VC-2                          |                     |                              |            |
| 2608               | 1628<br>Destinations | AES67 – 8 AES3                |                     | AES67 – 8 AES3               | 1300       |
| Gateways           |                      | Meta                          |                     |                              |            |

CLT-UFA Multi-playou



## **OVERALL SYSTEM OVERVIEW**








## PRODUCTION SYSTEM DESIGN

News and Entertainment



Production (one of two)

**IP World** 

**Gateways** 

SDI and/or IP equipment (some interim)



## PLAYOUT SYSTEM DESIGN

Decentralized control rooms







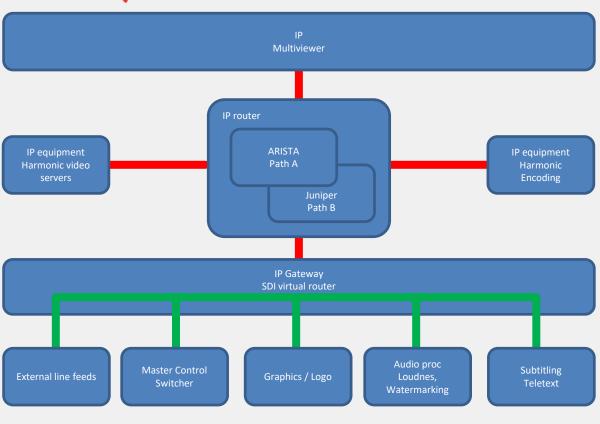











## 37 channels from Luxembourg

#### **IP technology based Broadcasting center**

- 36 HD channels and one UHD channel Broadcasted over Europe and abroad (France, Belgium, Netherlands, Singapore, Hungary, Luxembourg)
- 24x7 Monitoring
- **Broadcast Services**
- **Digital Media Operations**





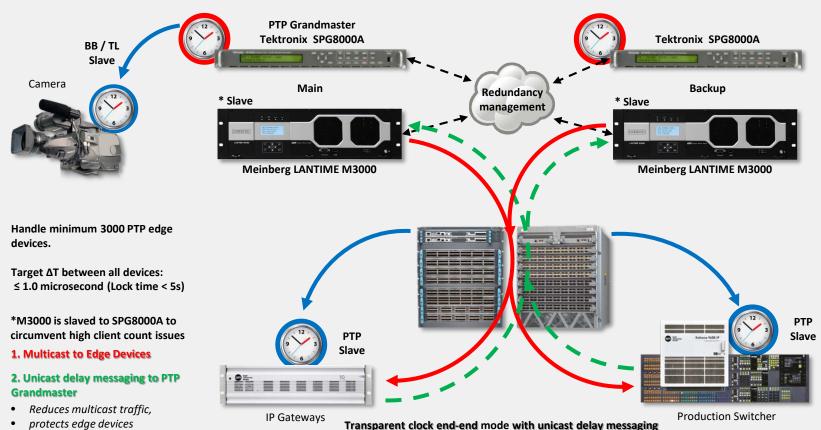


### **Playout**

One of 12 premium & 25 thematic channels (1x 4k channel)

**IP World** 

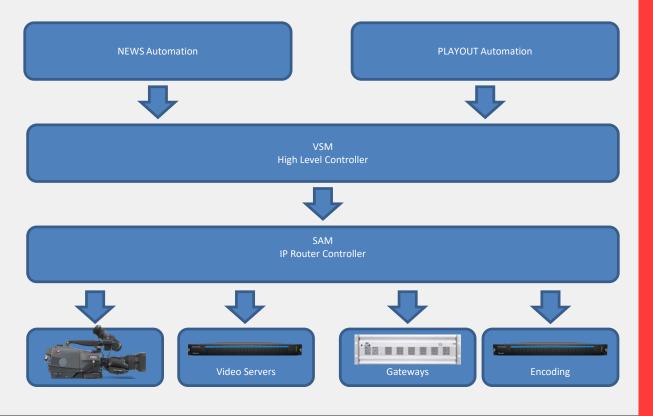
Gateways – Frame / one per playout


**SDI legacy equipment** 



## **SYNCHRONISATION**

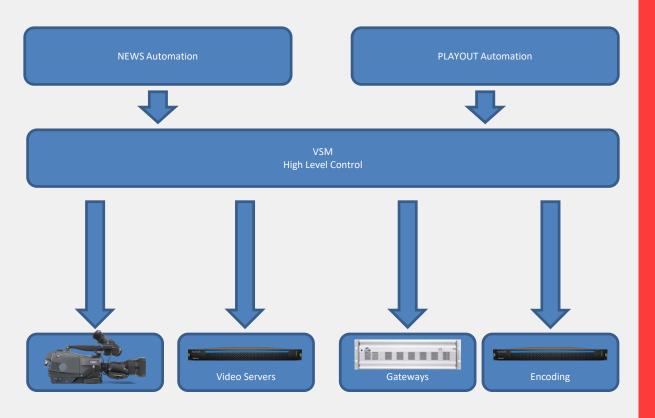



#### ST 2110-10 (System Timing); SMPTE ST 2059-1/2; AES67





## SYSTEM AND IP ROUTER CONTROLLER






### **Control Layers Today**

**Inbound Control** 





# **Target entire System Control**



## **SUMMARY**

Learnings, application hints, key findings



### Learnings

- Two different vendors for the dual central switches. For hardware and software redundancy
- Data plan performance is an issue in case of different switch vendors
- Monolithic core network switches removes complexity as well as the associated blocking/hashing issues as for Spine/Leaf architecture
- Clean switching is not mandatory for most of the signals
- Do not underestimate the switch latency behaviour (IGMP3) for playout systems
- For emergency purposes and/or system upgrades, need for an additional concurrent IP router control solution
- Third party brands integration is still complex and time consuming
- Cost saving effect does not yet exist

CLT-UFA Multi-playou



### **Application Hints**

- IP control systems can be single point of failure
- "Ghost" streams experience
  - Clean and safe interruption of flows is important
- Inbound control layer test using packet storm
- PTP distribution performance and scalability
- Fiber connectivity and QSFP's
  - Requires an absolute clean fiber connectivity
  - Validate the QSFP quality with all your components (second generation at BCE)
- Don't underestimate the Flow allocation and the Network IP address and port design efforts
  - Several thousands of IP addresses assignment
  - No tools on market
- The compliance of the IP edge devices with respect to specifications or recommendations
  - Future proofed system
  - Establishing a link between devices is quit easy but for the new Discovery & Registration features, it is a must to be compliant towards the recommendations and specifications.
  - SDP for stream information
- Network latency
  - 40GB is smaller than 25GB and 10GB but jitter is worse
- Dante for radio
  - Dante network synchronization constraints

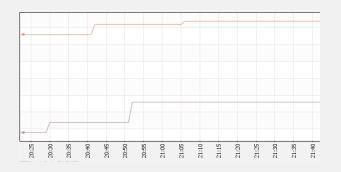
CLT-UFA Multi-playou

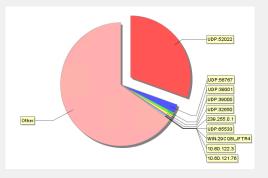


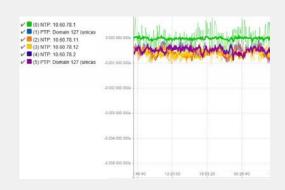
### **Key Findings**

- Monitoring solutions do not really exist
- Test, PoC and then test again
- Design period is the most important and is very complex
- Skillset of Broadcast Engineer
  - Needs to be adapted (network knowledge needed)
- Installation efficiency less cabling & quicker physical installation



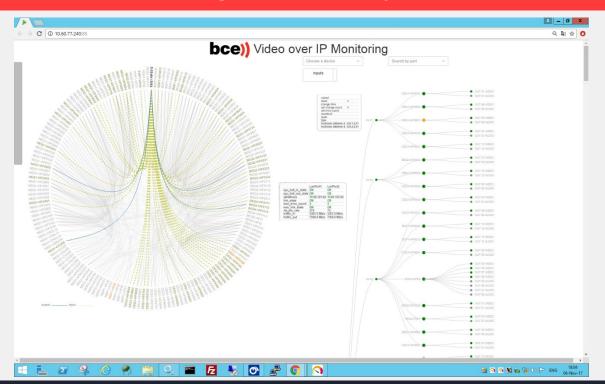

## **MONITORING**


Tools used in our case




### **Monitoring**

- DATAMINER and ROLLCALL (Alarms)
- PRTG, Syslog and sFlow (Logging)
- TIMEKEEPER (Timing Monitoring)










## **BCE** Monitoring tools example



| name3               |            |
|---------------------|------------|
| ident               | -1         |
| change time         |            |
| sdi change count    | -1         |
| sdi error count     |            |
| standard            |            |
| state               |            |
| type                |            |
| multicast address A | 239.1.2.81 |
| multicast address B | 239.2.2.81 |

|                    | LanPort1     | LanPort2     |
|--------------------|--------------|--------------|
| cpu_traf_in_state  | OK           | OK           |
| cpu traf out state |              | OK           |
| ipAddress          | 10.60.121.62 | 10.60.123.62 |
| link state         | OK           | OK           |
| mac_error_count    | 5            | 5            |
| mac link state     | OK           | OK           |
| rtp dis rate       | 274          | 74           |
| traffic_in         | 3381.5 Mb/s  | 3381.5 Mb/s  |
| traffic out        | 7508.8 Mb/s  | 7508.8 Mb/s  |



## **THANK YOU**

Patrick Bernard patrick\_bernard@bce.lu



## **SPARE SLIDES**

Patrick Bernard patrick\_bernard@bce.lu



### **Switch latency example**

|   | Stream Change Latency Factor                           | Device/Location          | Typical<br>Latency | Cumulative<br>Latency | Minimum<br>value | Maximum<br>value | Constant /<br>variable |
|---|--------------------------------------------------------|--------------------------|--------------------|-----------------------|------------------|------------------|------------------------|
| 1 | Send source change command to IP router control system | Automation               | <2ms               | <2ms                  | 1ms              | 2ms              | constant               |
| 2 | IP router control system sends command to Gateway      | IP router control system | <2ms               | <4ms                  | 1ms              | 2ms              | constant               |
| 3 | Gateway send IGMP join                                 | IQMIX                    | <2ms               | <6ms                  | 1ms              | 2ms              | constant               |
| 4 | Switch gets Join command                               | Switch                   | ~2-26ms            | <8-32ms<br>(Note1)    | 2ms              | 26ms             | variable               |
| 5 | Switch sends source                                    | Switch                   | <2ms               | <10-34ms              | 1ms              | 2ms              | variable               |
| 6 | Core Network Latency                                   | Switch/Network           | <2ms               | <12-36ms              | 1ms              | 2ms              | variable               |
| 7 | De-Jitter buffer                                       | IQMIX                    | ~4ms               | <16-40ms<br>(Note2)   | 1ms              | 4ms              | variable               |
| 8 | Gateway send IGMP leave command                        | IQMIX                    | <2ms               | <18-42ms<br>(Note3)   |                  |                  | variable               |
| 9 | Previous stream shut off                               | Switch                   | ~5ms               | <23-47ms              |                  |                  | variable               |
|   |                                                        |                          |                    |                       | 8 ms             | 40 ms            |                        |

<sup>1</sup> Switch gets join command – We have taken this to mean the time taken for the network to converge after the IGMPv3 request – so if this is layer2, its snooping operation, or if layer3, then the SSM path needs to be built and pruned as necessary. The numbers quoted range from layer2 to layer3. [layer2 (faster) /layer3(slower)]"

<sup>2</sup> De-jitter buffer. The size (and so latency) required here is lumped into our backend synchronisation function. We have pulled out here the pure jitter handling requirement, which allows us to re-align multiple streams (lipsync, switching video etc) and also to create continuous streaming outputs like SDI."

<sup>3</sup> Depends on the mode – break before make is pretty much instantaneous, make before break will require to hand on to the stream until after the perfect clean switch has been implemented."